

When the torsional load on the shaft is 6kN-m determine : 1) Maximum sheaf stress induced ii) Angle of twist. Also draw the distribution of shear stress in the wall of the shaft. Take G as 80 Gpa. Also find torsional stiffness. (12 Marks)

b. Discuss the application of Von Mises crierion and Tresca's criterion for a propeller shaft under torsion, Bending and thrust. (08 Marks)

- Explain the following terms with respect to the basic equations for thin walled beam: 6 a. i) The thin wall assumption ii) Stress flows iii) Stress resultants. (12 Marks)
 - What is wraping of thin- walled beam under torsion? Give the kinematic description. b.

(08 Marks)

Module-4

Calcualte the vertical deflection of the joint 'B' and the horizontal movement of support 'D' 7 a. in the truss shown in Fig Q7(a). The cross section area of each member is 1800mm² and Young's modulus for the material of the member is $200 \times 10^3 \text{N/mm}^2$. Using unit load (12 Marks) method.

b. Define the principle of virtual work for a particle. Obtain the equilibrium of a particle. (08 Marks)

OR

- Define a conservative force and obtain the work done by conservative force along any path 8 a. (08 Marks) joining two points. (12 Marks)
 - b. Explain Castigliano theorem and Clapeyron's theorem.

Module-5

A rigid rod ABCD is supported by a hinge at 'A' and two wires at 'B' and 'C' as shown in 9 a. Fig Q9(a). Determine the stress of the two wires. Take $E_s = 200$ GPa and $E_c = 120$ GPa. (10 Marks) Also find deflection at free end.

Explain Tresca's and Von Mise's criterion's in detail for uniaxial stress state, plane state of b. (10 Marks) stress and pure shear state.

OR

List the assumption of Kirchhoff plate. Derive the six strain displacement equation. 10 a.

(10 Marks) (10 Marks)

Derive the five equilibrium equations of Kirchhoff plate theory. b.